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Abstract

The STAT3 transcription factor is a pleiotropic transducer of signalling by hormones, growth factors and cytokines that has
been identified in the female reproductive tract from oocytes and granulosa cells of the ovary to uterine epithelial and
stromal cells. In the present study we used transgenic models to investigate the importance of STAT3 for reproductive
performance in these different tissues. The Cre-LoxP system was used to delete STAT3 in oocytes by crossing Stat3fl/fl with
Zp3-cre+ mice, or in ovarian granulosa cells and uterine stroma by crossing with Amhr2-Cre+ mice. Surprisingly, deletion of
STAT3 in oocytes had no effect on fertility indicating that the abundance of STAT3 protein in maturing oocytes and fertilized
zygotes is not essential to these developmental stages. In Stat3fl/fl;Amhr2-cre+ females impaired fertility was observed
through significantly fewer litters and smaller litter size. Ovulation rate, oocyte fertilization and development to blastocyst
were unaffected in this line; however, poor recombination efficiency in granulosa cells had yielded no net change in STAT3
protein abundance. In contrast, uteri from these mice showed STAT3 protein depletion selectively from the stomal
compartment. A significant reduction in number of viable fetuses on gestational day 18, increased fetal resorptions and
disrupted placental morphology were evident causes of the reduced fertility. In conclusion, this study defines an important
role for STAT3 in uterine stromal cells during embryo implantation and the development of a functional placenta.
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Introduction

Female reproductive organ function is controlled and coordi-

nated by an intricate network of signalling hormones, growth

factors and cytokines [1,2]. The interaction of many of these

signalling factors with their receptors can activate intracellular

signal transducer and activator of transcription 3 (STAT3) [3].

STAT3 is a member of a family of cytoplasmic proteins which are

phosphorylated after ligand interaction with cell surface receptors,

then translocated to the nucleus and bind specific gene promoter

elements to modulate expression. STAT3 protein is tyrosine

phosphorylated by the Janus kinases (JAK) and by receptor

tyrosine kinases in response to cytokine and growth factor signals.

In the ovary, oocytes sequestered in primordial follicles remain

quiescent until recruited into the growing pool sporadically

throughout the reproductive years. Follicle activation, growth

and atresia are major biological checkpoints that control female

reproductive potential and establish the developmental potential of

the resultant embryo [4]. Hormones, growth factors and cytokines

all contribute to the control of follicle activation and development

[2,5]. High levels of STAT3 and activated phospho-STAT3 have

been detected in the granulosa cells, oocytes and theca cells [6,7]

of growing follicles. Abundant STAT3 has been demonstrated in

oocytes at all stages of follicular development, although its

cytoplasmic localisation has suggested the majority is usually not

transcriptionally active in oocytes [6,8]. However cytokines that

signal via STAT3 are thought to act on oocytes [9], suggesting that

STAT3 may be a key mediator of regulated gene transcription in

the oocyte.

Important signalling factors known to act on ovarian granulosa

cells and also known to signal through STAT3 activation include

epidermal growth factor (EGF; [10]), leukemia inhibitory factor

(LIF; [11]), interleukin 6 (IL6; [6]) and leptin [12]. In porcine

granulosa cells STAT3 can be phosphorylated in response to EGF

treatment [7] or leptin [13] in vitro. Active DNA-binding STAT3

was identified in the granulosa cells of immature follicles from

hypophysectomised rats [14,15]. We have also found induction of

the Stat3 responsive gene and functional regulator of STAT,

SOCS4, in early activated primary follicles [11]. These findings

led to our hypothesis that STAT3 and SOCS4 are regulators that

mediate follicle activation and the transition of primordial into

primary follicles. However, very little is known about the actions of

STAT3 in granulosa cell or oocyte function and how STAT3

influences follicle activation or growth/atresia.

Similarly, in the preimplantation embryo, oocyte-derived

STAT3 is implicated in the first cleavage cycles in regulating
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responsiveness to endogenous and maternal tract-derived cyto-

kines and growth factors including EGF, HB-EGF, LIF and IL-6

[16,17]. STAT3 is essential for normal embryogenesis, and

STAT3 null mouse embryos die shortly after implantation.

In the uterus, STAT3 regulating growth factors such as EGF

[10] and cytokines including LIF, IL-6 and leptin, released by

epithelial cells and infiltrating immune cells play key roles

regulating the differentiation during decidualisation and the

implantation process. In the uterus, LIF acts on the luminal

epithelium and trophoblast to promote embryo attachment, while

IL11 acts on the epithelial and endometrial stromal cells

stimulating decidualisation and invasion of the extravillous

trophoblast [18]. IL-6 is involved in several pathways and

processes that impact on placental development and function

[19]. STAT3 is a key mediator of the response to each of these

cytokines, as well as EGF and other growth factors and is known to

contribute to preparing the endometrium for implantation.

Inhibition of activated STAT3 function has been shown to block

implantation when applied locally to the uterus [20]. Recently

STAT3 has been shown to be necessary for mediating normal

receptivity to embryo attachment in uterine epithelial cells [21]

where it interacts with Progesterone Receptor [22]. Deletion of

STAT3 in the progesterone receptor (Pgr) expressing uterine cells

(epithelium and stroma) reduced the expression of PR and

completely prevented implantation [22]. However, the selective

role for STAT3 in stromal differentiation and preparation for

implantation is unknown.

Here we used several mouse genetic models intended to

conditionally delete STAT3 selectively in oocytes, ovarian

granulosa cells and in uterine stromal cells to investigate the roles

of this important signalling mediator in folliculogenesis, ovulation

and implantation. Using ZP3-Cre strain mice which selectively

express Cre recombinase in oocytes from late primaryfollicle stage

we demonstrate that although it is abundant in oocytes, efficient

ablation of STAT3 in Stat3fl/fl;Zp3-Cre+ females did not affect

development of competent fertilizable oocytes. The Amhr2

promoter drives Cre expression from embryonic day e12.5 in

the Müllerian duct which derives the adult oviducts, uterine

stroma and myometrium as well as from postnatal day 8 in

granulosa cells from the secondary follicle stage. Interestingly,

using the AmhR2-Cre transgenic mouse line in conjunction with

STAT3fl/fl mice did not achieve efficient protein depletion in

granulosa cells. However, STAT3 ablation in uterine stromal

fibroblasts in Stat3fl/fl;Amhr2-Cre+ mice demonstrated a key role for

STAT3 in these cells for implantation, placental development and

also potentially for postpartum remodelling of the uterus.

Materials and Methods

Materials
Equine chorionic gonadotropin (eCG) was purchased from

Intervet Pty Ltd, Australia. Human chorionic gonadotropin (hCG)

was purchased from Calbiochem, Australia (Alexandrina, NSW).

Culture media was purchased from GIBCO, Invitrogen Australia

Pty. Ltd. Antibodies were purchased from Santa Cruz Biotech-

nology Inc (goat anti-rabbit IgG-HRP (sc-2004), Cell Signaling

Technology (anti-STAT3, 9132), Chemicon, Boronia, VIC

(biotinylated goat anti rabbit), Sigma (anti-b-actin, A3854), and

Abcam (goat pAb to mouse IgG (HRP) ab6789-1)). Unless stated,

all other reagents were purchased from Sigma Aldrich Pty Ltd

(NSW, Australia).

Generation of conditional knockout mice and
genotyping strategy

All mice were maintained on a 12:12 h day/night cycle with

rodent chow and water provided ad libitum. All murine experi-

ments were approved by the University of Adelaide’s Animal

Ethics Committee (approval #M-081-2007) and were conducted

in accordance with the Australian Code of Practice for the Care

and Use of Animals for Scientific Purposes (2013). Euthanasia was

by cervical dislocation by a trained, experienced and accredited

technician.

Floxed Stat3 mice with exons 11 to 14 flanked by two loxP sites

were generated by Alzoni et al. 2001 [23]. Mice were genotyped

for the floxed Stat3 allele (STAT3fl/lf or STAT3fl/+) by performing

PCR using the following primers: Flox11F 59-CACCAACA-

CATGCTATTTGTAGG-39 and Flox11R 59-CCTGTCTCTG-

ACAGGCCATC-39. In order to generate animals in which the

Stat3 gene was non-functional, Stat3 floxed mice were crossed with

one of two Cre transgenic lines, Amhr2-Cre or ZP3-Cre. Amhr2-Cre

knock in mice [24] were genotyped for the presence of the Cre

allele by PCR using the following primers: BPA-F 59-

CGCATTGTCTGAGTAGGTGT-39 and MISR-R 59-GAAA-

CGCAGCTCGGCCAGC-39. ZP3-Cre knock in mice (The

Jackson Laboratory, stock #003651) were genotyped for the

presence of the Cre allele by PCR using the following primers:

IMR1084 59-GCGGTCTGGCAGTAAAAACTATC-39 and

IMR1085 59-GTGAAACAGCATTGCTGTCACTT-39.

Confirmation of Recombination by PCR
To asses recombination in target tissues (GC and oocytes), DNA

was extracted and PCR was performed using the following

primers: Flox11F (as described above) and Flox14R 59-GCAG-

CAGAATACTCTACAGCTC-39. The Wild type Stat3 allele

produces a 2100 bp amplification product with these primers

while, if recombination had occurred, a 310 bp product was

observed in 2% agarose gel electrophoresis stained with Gel Red

(BioRad).

Isolation of COCs and GC
Mice were humanely euthanized at times specified in results and

COCs and GCs were collected in minimum essential medium

(MEM) (alpha MEM from Gibco, Invitrogen) by puncture of

follicles (or puncture of the ampulla of the oviduct for ovulated

COCs) with a 26 gauge needle to release cells. When super-

ovulation was required, mice aged 21-25 days were administered

5IU eCG by i.p. injection, followed 44 hours later by 5 IU of

hCG. Cells were collected and pelleted, and excess media removed

before being snap frozen in liquid nitrogen and stored at 280uC
until use.

Western Blot
For the Stat3xAmhr2-Cre strain, the level of total STAT3 protein

present in GC was assessed by Western blot. Cell pellets were

resuspended in 0.05 M sodium acetate, 6 M urea and 0.1%

Triton buffer and protease inhibitors (a protease inhibitor cocktail

(10 ml/ml) and Aprotinin (10 IU/ml)). Homogenisation was

carried out by vortexing followed by gentle agitation for 1 h at

4uC. The extract was then centrifuged at 10,000xg for 5 min and

the supernatant transferred to a fresh tube. Protein concentrations

were determined by Bradford assay (Bio-Rad Laboratories Pty.

Ltd.). Proteins were separated on a reducing 10% acrylamide gel

then transferred to a polyvinylidene difluoride membrane (Im-

mobilon-P, Millipore Corporation). Membranes were blocked in

TBST (10 mM Tris-HCl pH 7.5, 150 mM NaCl and 0.05%
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Tween 20) containing 3% non-fat milk for 1 at room temperature.

Membranes were then incubated with primary antibodies in 3%

milk/TBST for 2 h at room temperature (STAT3, 1:1000 and b-

actin, 1:10,000). Blots were then washed in TBST and incubated

with secondary antibodies, (goat anti-rabbit IgG-HRP, 1:2000 or

goat anti-mouse IgG-HRP, 1:5,000) for 1 h at room temperature,

and then blots were again washed in TBST. Enhanced chemilu-

minescence detection was performed as per manufacturer’s

instructions (Amersham, GE Healthcare Life Sciences, Ryldamere

NSW, Australia).

Fertility assessment
To asses reproductive performance, 6–8 week old female wild

type (Stat3fl/fl;Cre-), STAT3 heterozygous (Stat3fl/+;Cre+) and

STAT3 knock out (Stat3fl/fl;Cre+) mice were mated with proven

C57Bl6 male mice, and pup numbers recorded over a 26 (Stat3-

ZPCre) or 30 (Stat3-AmhrCre) week period. Stud males were

switched between cages after 3 months.

Histological assessment of reproductive organs/
Immunohistochemistry

Tissues were fixed in 4% paraformaldehyde, embedded in

paraffin and then cut into 7 mm sections before being mounted on

glass slides. Tissue sections were dewaxed and rehydrated and

antigen retrieval was performed by incubating slides for 10 min at

RT in proteinase K (10 mg/ml). Sections were rinsed in PBS

before being treated with 3% hydrogen peroxide for 10 min.

Sections were washed sequentially in PBS then PBST (PBS with

0.025% Tween-20) before being blocked with 10% normal goat

serum (NGS) in PBST for 1 h in a humid chamber. Primary

antibody (anti-STAT3, 1:1000) was applied and incubated

overnight in a humid chamber at room temperature. Negative

control slides had the primary antibody omitted. Sections were

washed thoroughly in PBST before incubation with the secondary

antibody, biotinylated goat anti rabbit (1:500) for 1 h in a humid

chamber at room temperature. Protein localisation was visualised

with the VECTASTAIN ABC Kit and the Vector DAB Substrate

Kit (both Vector Laboratories Inc.), according to the manufac-

turer’s directions. Sections were briefly counterstained with diluted

haematoxylin then dehydrated and air dried before mounting in

Permount (Fisher Scientific). Images were captured on a Non-

oZoomer digital imager and intensity of immunostaining was

analysed using phase analysis with AnalySIS software (Olympus).

To verify reduced STAT3 protein in oocytes, AnalySIS-ProTM

software (Soft Imaging System, Germany) was used. Briefly, a

colour threshold for positive immunostain was set based on the

intensity of positive staining (brown pixels) in granulosa cells of

wild type mice. This threshold was then assessed in defined regions

of equivalent area in 20 randomly selected oocytes from each of

the three genotypes and results were expressed as the percentage

of pixels that were positive (at or above the threshold brown

intensity) per field. No background subtraction was applied.

Analysis was based on the average results from 20 oocytes in one

representative section from each (n = 4–5) animal of each

genotype.

Natural ovulation rate and embryo development analysis
of the STAT3xAmhr2-Cre strain

Female Stat3fl/fl;Amhr2-Cre and Stat3fl/+; Amhr2-Cre at 6-8 weeks

old were paired with proven C57Bl6 males. Each morning females

positive for a vaginal mating plug were humanely euthanized and

presumptive zygotes flushed from the oviduct and counted.

Zygotes were cultured in G1 (Vitrolife) fertilization media and

then moved to fresh G2 embryo culture media at the 2-cell stage

and cultured to the blastocyst stage. Each day the numbers of

embryos at each developmental stage were scored.

Statistical analysis
Data were analysed for statistical significance using Graph Pad

Prism software version 5.01 (City CA, USA), using tests as outlined

in the results for each experiment. A P-value ,0.05 was

considered statistically significant.

Results

Mice with oocyte-specific deletion of STAT3 (Stat3fl/fl;Zp3-
cre+) have no infertility phenotype

Phosphorylated active STAT3 has been reported in oocytes in a

number of studies [6,8] and here we confirmed abundant STAT3

in oocytes of follicles at stages from early primary to preovulatory.

To assess the physiological importance of oocyte STAT3 we

crossed Zp3cre+ and Stat3fl/fl mice, producing Stat3fl/fl;Zp3-cre+

females with selective ablation of STAT3 in oocytes.

Fertility was compared in the oocyte mutant Stat3fl/fl; Zp3-cre+

females and control genotypes by evaluating production of

offspring in breeding pairs over a 26 week period. Female control

mice (Stat3fl/fl;Zp3-cre-, Stat3fl/+;Zp3-cre+) or oocyte null (Stat3fl/fl;

Zp3-cre+) were mated with proven wild type C57Bl/6 stud males. A

small reduction in cumulative pups born in the heterozygous

(Stat3fl/+;Zp3-cre+) group was significant compared to both the Cre-

negative and mutant (Stat3fl/fl;Zp3-cre+) groups (FIG 1A). However,

this was interpreted as a statistical anomaly since the number of

litters born each 30 day period over 26 weeks (FIG 1B) and

number of pups born per litter (FIG 1C) were both not

significantly different between all three genotype groups.

To confirm deletion of the Stat3 gene in oocytes, PCR of DNA

extracted from COCs collected from mice which had been super-

ovulated was undertaken. The PCR conditions used did not

amplify the 2100 bp product of the non-recombined Stat3 allele in

Stat3fl/fl;Zp3-cre- mice, while the predicted 310 bp band produced

from the truncated gene after recombination was detected in

heterozygous (Stat3fl/+; Zp3-cre+) and knock out (Stat3fl/fl;Zp3-cre+)

oocytes showing that ZP3-Cre driven recombination occurred in

these genotypes (FIG 1D). Immunostaining for STAT3 protein

was consistently reduced in Stat3fl/fl;Zp3-cre+ oocytes, further

demonstrating effective gene deletion (FIG 1E). There were no

obvious morphological differences between ovaries of each

genotype, and positive staining in somatic cells remained

consistent between the three genotypes. Negative controls showed

in no visible immunostaining (data not shown).

This result shows that Stat3 gene disruption in oocytes, and thus

cleavage stage embryos, did not alter oocyte development or their

capacity to generate live offspring at normal frequency.

STAT3fl/fl;Amhr-Cre+ mice are sub fertile
Stat3 was selectively mutated in granulosa cells of the ovary by

crossing Amhr2-cre and Stat3fl/fl mice, producing Stat3fl/fl;Amhr2-cre

females. Fertility was assessed in Stat3fl/fl;Amhr2-cre+ female mice

compared with controls (Stat3fl/fl;Amhr2-cre-, and Stat3fl/+;Amhr2-

cre+) by pairing with proven C57Bl/6 stud males and evaluating

litter production over a 30 week period. The cumulative number

of pups per litter and number of litters was recorded. Importantly

one of five Stat3fl/fl;Amhr2-cre+ females was totally infertile,

producing no offspring over the 30 week breeding period, though

the fertility of the male was proven with other females.

Considering only the remaining four breeders, there was a

significant reduction in total pups born to the null (Stat3fl/fl;

STAT3 Action in Female Reproductive Tract
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Amhr2-cre+) females compared to the Stat3fl/+ heterozygous and

Cre-negative control breeders over this period (FIG 2A). The

heterozygous Stat3fl/+;Amhr2-cre+ breeders had significantly in-

creased cumulative pups born compared to the Cre-negative

group. The average number of pups born per litter in the

granulosa mutant group was reduced (by 44% compared to the

Cre-negative controls 3.67 vs 6.47 pups/litter; FIG 2B, P =

,0.0001). The average number of litters per 30 day period was

also substantially lower, with 42% fewer litters in the null group

compared to the controls (0.54 vs 0.92 litters/30 day period;

FIG 2C, P = 0.0171).

The numbers of oocytes ovulated following eCG+hCG stimu-

lated superovulation was not significantly affected by genotype

(FIG 2D), demonstrating the absence of any adverse effect of

genotype on generation of mature oocytes or the ovulation event

when exogenous gonadotrophins are provided. To ensure an

ovulatory defect was not masked by hormonal hyperstimulation

we also assessed ovulation the morning after mating in natural

estrus cycling adult females. Notably, although no significant effect

was recoded, incomplete responsiveness in the GC null group was

seen with 27% of mice (3 out of 11) failing to ovulate, while all

mice from the control group ovulated successfully. This may

reflect an ovarian defect in a proportion of mice, consistent with

the one in five infertile females. Amongst the remaining naturally

ovulating mice, no significant difference was observed in the

number of cumulus oocyte complexes released (FIG 2E).

To determine whether fertilization or embryo development was

affected after granulosa cell specific Stat3 mutation, zygotes were

cultured and the progression of embryo development was

examined. The rates of fertilization (2-cell embryos after 24 h)

and on-time embryo development to blastocyst were each

equivalent in the null and Cre-negative controls (FIG 2F).

Together, these results imply that the smaller litter size and less

frequent litter production seen in Stat3fl/fl;Amhr2-cre+ mice is the

consequence of implantation success, or post-implantation devel-

opmental competence.

To evaluate recombination excision of the Stat3 gene in

granulosa cells, PCR was conducted on DNA extracted from

COCs collected after superovulation of mice aged 23–25 days.

The 310bp truncated gene product was detected in all Stat3fl/fl;

Amhr2-cre+;and Stat3fl/+ mice tested, but unexpectedly, wild type

alleles of 2100 bp were also always detected (FIG 2G). Western

blot showed no overt difference in STAT3 protein abundance in

extracts of GC collected from non-stimulated mice 23–28 days old

of all 4 possible genotypes of the Stat3;Amhr2cre line (Stat3fl/fl;

Amhr2-cre-, Stat3fl/+;Amhr2-cre+, Stat3fl/fl;Amhr2-cre+, and Stat3fl/+;

Amhr2-cre-)(FIG 2H). Absence of detectable change in STAT3

abundance in ovaries was further supported by STAT3 immuno-

histochemistry. Sections of ovaries from all mice at the completion

of a 30 week breeding period were immunostained for STAT3.

Negative controls showed no visible immunostaining (data not

shown). There were no obvious morphological differences in

ovarian structure observed, and positive staining for STAT3 in

granulosa and luteal cells did not differ in localisation or

abundance between the three groups (FIG 2I).

Abnormal uterine structure and reduced fetal viability in
Stat3fl/fl; Amhr2-cre+ mice

The Amhr2 promoter drives Cre expression in cells of the

Müllerian duct which are the progenitors of the oviducts, uterine

stroma and myometrium in females from embryonic day e12.5

[24–26]. In order to investigate further the cause of the sub-fertility

of the Stat3fl/fl;Amhr2-cre+ mice, considering that no effect on oocyte

development and no reduction in STAT3 within granulosa cells

could be demonstrated, STAT3 abundance was investigated in the

uterus. Immunohistochemistry in sections of uterine tissue

collected from females at the completion of a 30 week breeding

period revealed a clear reduction in STAT3 staining in the uterine

stroma of Stat3fl/fl; Amhr2-cre+ (FIG 3A,B) compared to controls

Figure 1. Normal fertility in oocyte STAT3 mutant Stat3fl/fl;Zp3-cre+mice. Reproductive ability of the Stat3;ZP3Cre line was tracked over a 26
week breeding period. (A) Cumulative number of pups (asterix indicates statistical significance from other groups, P , 0.05, one way ANOVA and
Tukey’s post hoc test). (B) average number of litters per 30 day period. (C) average number of pups per litter. (n = 5 breeder pairs per genotype). (D)
Recombination of the Stat3 gene in COCs was confirmed by PCR with the amplification of a 310 bp truncated product in heterozygous (Stat3fl/+; Zp3-
cre+) and knock out (Stat3fl/fl;Zp3-cre+) mice. (E) STAT3 immuno staining (brown) in ovaries from mice at 26 days old, bar = 500 mm.
doi:10.1371/journal.pone.0101182.g001
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(FIG 3C-F), while positive staining in luminal and glandular

epithelial cells was consistent between the three genotypes (FIG 3).

Negative controls showed no visible immunostaining (data not

shown).

To determine whether implantation and gestation were

affected, females of each genotype were mated with wild type

males. Again, fewer Stat3fl/fl; Amhr2-cre+ females with evidence of

progression from mating to pregnancy was seen, although this did

not reach statistical significance. Of those that were pregnant at

day 18 after observation of a mating plug, the fetuses, resorption

sites and placentae were examined at autopsy. Although there was

no difference in the total number of implantation sites,

significantly fewer viable fetuses and more resorption sites were

seen in Stat3fl/fl;Amhr2-cre+ females, where the number of viable

implants was substantially reduced by 39-49% compared to all

other control groups (Table 1, P,0.05) and the number of

resorption sites was increased at least 6-fold (Table 1). In viable

implantation sites, the weight of viable fetuses was similar across

genotypes but placental weight was substantially increased by

approximately 27% in Stat3fl/fl;Amhr2-cre+ mice and hence the

fetal/placental weight ratio, a measure of placental functional

competence, was reduced by approximately 22%. Consistent with

this, histological assessment of placentas from Stat3fl/fl;Amhr2-cre+

females revealed a notably thickened junctional zone compared to

that of controls (FIG 4). This increase in fetal loss and abnormal

development in Stat3fl/fl;Amhr2-cre+ mothers is consistent with the

poor performance of the breeding colony and observations of no

change in ovulation or preimplantation embryo development.

Discussion

STAT3 is expressed in multiple female reproductive tissues

where it potentially transduces signals from many cytokines and

growth factors that influence reproductive processes. We previ-

ously found that the Stat3 target gene and modulator of STAT

action SOCS4 is induced in early primordial follicle activation

[11]. We undertook conditional deletion of STAT3 Stat3 in

oocytes, granulosa cells and uterine stromal cells in order to better

determine the key sites of STAT3 action in female fertility. The

results provide evidence that maternal STAT3 plays a critical role

specifically in the uterine stroma, and is necessary for normal

Figure 2. Subfertility in Stat3fl/fl;Amhr2-cre+ mice. Reproductive ability of the Stat3;Amhr2Cre line was tracked over a 30 week breeding period.
(A) Cumulative number of pups born (characters indicate statistical significance, P,0.05, one way ANOVA and Tukey’s post hoc test). (B) Average
number of litters per 30 day period. (C) Average number of pups per litter (asterix indicates statistical significance from other groups,P,0.05, one way
ANOVA and Tukey’s post hoc test) (n = 5 breeder pairs per genotype). (D) Ovulation rates were assessed in both hormonally stimulated (eCG+hCG)
and naturally mated (E) mice (n$8 mice per group). (F) Rate of embryo development was assessed in knock out and wild type groups following in
vitro fertilization (n$6 mice per group). (G) Recombination of the Stat3 gene in COCs was confirmed by PCR with the amplification of a 310 bp
truncated product in heterozygous (Stat3fl/+;Amhr2-cre+) and knock out (Stat3fl/fl;Amhr2-cre+) mice. (H) Abundance of STAT3 protein was analysed by
Western blot of GC collected from all 4 genotypes of the STAT3;Amhr2Cre line. Pooled GC samples from 3 mice shown, equivalent sample loading
(10 mg protein extract per lane) was confirmed by subsequent b-actin analysis of the same blot. (I) STAT3 immuno staining (brown) in ovaries from
mice after completion of the 30 week breeding period, bar = 500 mm.
doi:10.1371/journal.pone.0101182.g002

STAT3 Action in Female Reproductive Tract
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Figure 3. STAT3 deficiency in uterine stroma and aberrant uterine morphology in Stat3fl/fl; Amhr2-cre+ mice. Transverse sections of uteri
immunostained for STAT3 demonstrate the lack of STAT3 in (A, B) Stat3fl/fl;Amhr2-cre+ uterine stromal cells, while luminal and glandular epithelial
cells had equivalent STAT3 in all genotypes. (C, D) Stat3fl/fl;Amhr2-cre-, (E, F) Stat3fl/+;Amhr2-cre+. Representative examples of 5 mice for each
genotype are shown. Scale bars in A, C and E 500 mm, in B, D, and E 100 mm.
doi:10.1371/journal.pone.0101182.g003

Figure 4. Reduced fetal viability and placental morphology in Stat3fl/fl;Amhr2-cre+ mice. Mid-saggital sections of placental tissue recovered
on day 17.5 pc from Stat3fl/fl; Amhr2-cre+ females (A, C) and Stat3fl/+;Amhr2-cre+ females (B, D) stained with hematoxylin and eosin. A moderately
thicker junctional zone (Jz) compared with control genotypes was observed in Stat3fl/fl;Amhr2-cre+ mice, while the labyrinthine (La) zone appears
comparable in thickness. Representative images are shown. Representative examples of 7-9 mice per genotype. Bars in A&B are 2 mm; bars in C and d
are 400 mm
doi:10.1371/journal.pone.0101182.g004

STAT3 Action in Female Reproductive Tract
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establishment of the feto-maternal interface and placental

development. Collectively the data reported herein show that

STAT3-deficiency in AMHR-expressing tissues results in a 50%

reduction in fecundity, fully accounting for loss occurring in the

post-implantation phase of pregnancy.

STAT3 is strongly expressed in uterine luminal and glandular

epithelium [21,27] as well as stromal cells [28] and is also known

to be phosphorylated and activated in epithelial and stromal cells

during the window of implantation receptivity, around 3.5 and

5.5 dpc respectively [28-30]. A previous report of Stat3 gene

ablation simultaneously in epithelial and stromal cells of the uterus

by crossing Statfl/fl mice with progesterone receptor-promoter

driven Cre expressing mice caused implantation failure [22].

These mice exhibited dysregulated expression of Pgr and other

luminal epithelial genes involved in embryo attachment and

invasion, clearly defining a role for STAT3 in conjunction with Pgr

in the response to embryo-endometrial interaction. However, the

importance, if any of STAT3 in uterine stroma was masked by the

severe defect in epithelial function and embryo implantation and

hence was not identified in that study. In the current study, we

have deleted uterine STAT3 selectively in the myometrial and

stromal cells of uteri where Amhr2 is strongly expressed from early

development of the female reproductive tract from 12.5 dpc [24–

26].

A complete assessment of preimplantation embryos showed that

fertilization and embryo development were normal in the Amhr2-

cre;Stat3fl/fl mice. The number of implantations was also not

affected, but a significantly increased number of fetal resorptions

demonstrates that the loss of stromal STAT3 altered the

establishment of the feto-maternal interface. Given that inade-

quate placental development is a key underlying cause of fetal loss

in midgestation [31] and in the absence of other overt defects in

surviving fetuses, its seems reasonable to infer that disrupted

placental development is the cause of demise of 50% of the

implantation sites. The reason why some fetuses survive despite

abnormal placentation while others do not is unclear, but similar

incomplete penetrance is seen in other genetic models of placental

development [31] including in mice deficient in the cytokine GM-

CSF where a similarly expanded junctional zone is seen [32]. The

significantly decreased fetal/placental weight ratio and histological

evidence for thickened placental junctional zones are additional

indicators of compromised placental function that are likely to

originate earlier in placental morphogenesis and manifest as fetal

demands accelerate in later gestation [31,33].

The underlying cellular and molecular mechanisms for the

effects of STAT3 deficiency on junctional zone development are

not clear. There is substantial evidence that STAT3-regulating

cytokines including LIF and IL6 have key roles as regulators of

trophoblast differentiation and invasive function [34–36]. How-

ever, a direct role for STAT3 in trophoblasts is unlikely to explain

the effects seen herein, as conceptus-derived tissues are hemizy-

gous for STAT3 deficiency by virtue of their wild-type paternal

genome, and STAT3 heterozygous embryos have no develop-

mental defects. It is more likely that maternal tissues and

particularly decidual cells arising from the uterine stroma are

responsible for abnormal placental development, secondary to

altered interactions with the maternal compartment of the

implantation site. Notably, STAT3 responsiveness would be

expected to be crucial for IL-11-regulated changes in decidual

formation [37], and other STAT3 signalling agents have been

implicated in related roles [38]. It is also possible that signals

originating from immune cells play a part via STAT3 activation in

uterine stromal cells to promote the progress of trophoblast

implantation and development of the fully functional placenta.

Abundant STAT3, its phosphorylation and nuclear localisation

in granulosa and cumulus cells throughout follicle development

and ovulation [6] suggests it is involved in folliculogenesis. In the

present study this could not be determined due to very inefficient

Cre-mediated recombination of the floxed Stat3 alleles in these cell

types. The Amhr2-cre line has been successfully used for gene

disruption in granulosa cells [39–41], including in our hands [42],

but failed to mediate any change in granulosa STAT3 protein

levels in follicles of any stage. This Cre expressing line used to

generate granulosa-conditional Dicer mutation caused a follicle

growth defect within 8 days postnatal indicating efficient

expression from early stage follicle development [40]. The same

line was also effective for showing a role for Dicer in uterine

stroma [43]. Our finding that granulosa STAT3 could not be

depleted by this experimental approach suggests to us that there

may be a regulatory interaction between STAT3 and the Amh/

Amhr2 pathway in granulosa cells as has been previously

suggested [12].

STAT3 is also strongly and reproducibly detectable in oocyte

cytoplasm from the primordial stage [6,8,44]. We achieved

efficient deletion of STAT3 specifically in oocytes in the Zp3-

cre;Stat3fl/fl genotype females. The Zp3 gene is active from the early

primary stage of follicle growth and our immunohistochemistry

demonstrated reduced STAT3 abundance in oocytes of follicles at

all growing stages. The oocyte is considered a likely target for a

range of cytokines and growth factors that have the capacity to

signal through the STAT3 pathway [9]. That the ablation of

STAT3 did not affect fertility in terms of ovulation rate or live

Table 1. The effect of maternal STAT3 deficiency on fetal and placental parameters at day 18 of pregnancy.

Stat3fl/+;Amhr2-cre- Stat3fl/+;Amhr2-cre+ Stat3fl/fl;Amhr2-cre- Stat3fl/fl;Amhr2-cre+

Females pregnant/females mated
(%) a

8/9 (89) 7/8 (88) 9/10 (90) 5/7 (71)

Mating interval (days) 6.261.6 2.960.9 3.260.9 2.560.7

Implantation sites/litter 7.660.4 8.460.3 8.460.5 9.060.9

Viable fetuses/litter 6.960.5 (90) a 7.760.4 (92) a 8.260.5 (97) a 4.260.7 (46) b

Resorbed fetuses/litter 0.860.4 (10) a 0.760.3 (8) a 0.260.1 (3) a 4.860.4 (54) b

Fetal weight (mg) 936628 905623 869620 900649

Placental weight (mg) 11063 a 10362 a 10862 a 13565 b

Fetal: placental weight ratio 8.760.4 a 8.860.2 a 8.160.2 ab 6.960.5 b

Values are mean 6 SD. Data were compared by independent samples t-test. Values with different superscript characters were significantly different P,0.05.
doi:10.1371/journal.pone.0101182.t001
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birth rate, indicates that oocyte STAT3 is not essential for oocyte

development, maturation, fertilization or subsequent embryo

development. Since we found no requirement for oocyte STAT3

we suggest that either the above mentioned growth factors play no

major role directly in the developing oocyte, or their signalling in

oocytes utilises another signal transduction pathway such as

another STAT family member.

It is noteworthy that our results do not support a requirement

for STAT3 within the early preimplantation embryo. Maternal

transcripts for STAT3 transmitted from the oocyte are implicated

in signalling mediated by both endogenous and maternal tract-

derived cytokines LIF and IL-6 [16,17]. Unlike in oocytes, the

JAK/STAT pathway is constitutively activated in preimplantation

mouse embryos with evidence of phosphorylated STAT3 in the

nucleus throughout the preimplantation period [45]. Studies in Lif

null mutant mice show that LIF acts from the 4 cell stage to

phosphorylate STAT3, an important regulator of the OCT4-

NANOG circuitry required to maintain embryonic stem cell self-

renewal. IL6 and LIF have been implicated in activating STAT3-

regulated anti-apoptotic pathways from early cleavage stages

[46,47]. However, it seems that although STAT3 signalling is

essential for maintenance of pluripotent inner cell mass lineages,

blastocyst formation can occur normally in the absence of STAT3

[46]. The current results are consistent with this latter finding.

In conclusion, this study is the first to find that STAT3 plays an

important role specifically in uterine stromal cells during embryo

implantation and the development of a functional placenta. The

absence of STAT3 in this compartment caused a failure of

gestation, dysmorphic placental development and in many

conceptuses, embryo death and resorption. In oocytes STAT3

had no discernable role since recombination efficiently ablated the

Stat3 gene and resultant protein abundance, but had no effect on

oocyte development or fertilization. Finally, the inability to delete

STAT3 in granulosa cells using Cre-recombinase expression

driven by the Amhr2 promoter suggests a regulatory link between

STAT3 and Amhr2 such that the latter cannot be used to

efficiently delete the former and hence no conclusion could be

drawn on the role for Stat3 in granulosa cells.
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